Is there a universal log law for turbulent wall-bounded flows?

نویسنده

  • William K George
چکیده

The history and theory supporting the idea of a universal log law for turbulent wall-bounded flows are briefly reviewed. The original idea of justifying a log law from a constant Reynolds stress layer argument is found to be deficient. By contrast, it is argued that the logarithmic friction law and velocity profiles derived from matching inner and outer profiles for a pipe or channel flow are well-founded and consistent with the data. But for a boundary layer developing along a flat plate it is not, and in fact it is a power law theory that seems logically consistent. Even so, there is evidence for at least an empirical logarithmic fit to the boundary-friction data, which is indistinguishable from the power law solution. The value of kappa approximately 0.38 obtained from a logarithmic curve fit to the boundary-layer velocity data, however, does not appear to be the same as for pipe flow for which 0.43 appears to be the best estimate. Thus, the idea of a universal log law for wall-bounded flows is not supported by either the theory or the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling of near-wall flows in quasi-two-dimensional turbulent channels.

The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We fi...

متن کامل

Spectral derivation of the classic laws of wall-bounded turbulent flows

We show that the classic laws of the mean-velocity profiles (MVPs) of wall-bounded turbulent flows-the 'law of the wall,' the 'defect law' and the 'log law'-can be predicated on a sufficient condition with no manifest ties to the MVPs, namely that viscosity and finite turbulent domains have a depressive effect on the spectrum of turbulent energy. We also show that this sufficient condition is c...

متن کامل

Wall Y+ Strategy for Dealing with Wall-bouded Turbulent Flows

A strategy for dealing with turbulent flows over a two dimensional surface mounted obstacle using the wall y as guidance in selecting the appropriate grid configuration and corresponding turbulence models are investigated using Fluent. The CFD results were compared with experimental data from Zeidan’s Turbulent Shear Recovery behind Obstacles on Smooth and Rough Surfaces. Both undisturbed and d...

متن کامل

High–Reynolds Number Wall Turbulence

We review wall-bounded turbulent flows, particularly high–Reynolds number, zero–pressure gradient boundary layers, and fully developed pipe and channel flows. It is apparent that the approach to an asymptotically high– Reynolds number state is slow, but at a sufficiently high Reynolds number the log law remains a fundamental part of the mean flow description. With regard to the coherent motions...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 365 1852  شماره 

صفحات  -

تاریخ انتشار 2007